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ABSTRACT

Low-rank tensor representation-based multi-view clustering

has become an efficient method for data clustering due to the

robustness to noise and the preservation of the high order cor-

relation. However, existing algorithms may suffer from two

common problems: (1) the local view-specific geometrical

structures and the various importance of features in differ-

ent views are neglected; (2) the low-rank representation ten-

sor and the affinity matrix are learned separately. To address

these issues, we propose a novel framework to learn the Graph

regularized Low-rank Tensor representation and the Affinity

matrix (GLTA) in a unified manner. Besides, the manifold

regularization is exploited to preserve the view-specific ge-

ometrical structures, and the various importance of different

features is automatically calculated when constructing the fi-

nal affinity matrix. An efficient algorithm is designed to solve

GLTA using the augmented Lagrangian multiplier. Extensive

experiments on six real datasets demonstrate the superiority

of GLTA over the state-of-the-arts.

Index Terms— Multi-view clustering, low-rank tensor

representation, Tucker decomposition, adaptive weights, lo-

cal manifold.

1. INTRODUCTION

Multi-view data is ubiquitous in data mining and machine

learning areas. For example, images are often described by

different kinds of features, such as color, texture, and edge;

documents can be translated into different languages. Multi-

view clustering [1, 2, 3, 4, 5, 6] takes advantages of these

multi-view data to boost the clustering performance, and has

shown the superiority over its single-view counterparts.

Considerable efforts have been made to develop many

efficient algorithms for multi-view clustering. The core of

multi-view clustering is how to integrate the information of

multi-view features to form a reliable affinity matrix of all

samples. For example, Xia et al. [7] proposed to recover
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a shared low-rank transition probability matrix by low-rank

and sparse decomposition. One limitation of [7] is that the

high order correlation of multiple features may be ignored by

only learning the common information among all views [2].

To tackle this issue, the work in [8] proposed a novel essential

tensor learning method by tensor robust principal component

analysis framework [9, 10]. Under the assumption that the

observed data points usually reside in some low-dimensional

spaces [11, 12, 13, 14, 15], Zhang et al. [2] extended the low-

rank representation [13] into the multi-view setting. Besides,

the high order correlation is captured by the tensor nuclear

norm defined as the sum of the nuclear norms of all unfolding

matrices [16]. However, it may yield unsatisfactory perfor-

mance in real applications, since the unfolding-based tensor

nuclear norm is a loose approximation of Tucker rank [9, 17].

To mitigate this issue, the tensor-SVD-based tensor nuclear

norm [9] is exploited in [4] to ensure the consensus among

multiple views.

While the low-rank tensor representation-based multi-

view clustering methods have achieved incredibly encourag-

ing performance, they still suffer from the following limita-

tions: (1) the ignorance of the local view-specific geometrical

structures. The methods in [2, 4, 7, 8] extended the (tensor)

robust principal component analysis or (tensor) low-rank rep-

resentation [13, 9, 17] for multi-view clustering by only tak-

ing the global low-rank property of the representation matri-

ces/tensors into consideration. Thus the locality and similar-

ity information of samples may be ignored in the learning pro-

cess [18, 3, 19]. (2) To obtain the clustering results, the meth-

ods in [2, 4] first pursue the subspace representation tensor

using different tensor rank approximations and then construct

the final affinity matrix. This way, the two critical factors

in spectral clustering, i.e., the representation tensor and the

affinity matrix, are learned separately. Thus there is no guar-

antee of recovering an optimal clustering result. Besides, this

scheme treats the representation matrices of different views

equally, which may lead to unsatisfactory performance in real

applications. It is mainly because different features character-

ize specific and partly independent information of the datasets

and thus may have distinct contributions for the final cluster-

ing results [20].

Such two concerns are not well solved in existing low-
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rank tensor representation-based multi-view clustering meth-

ods. Motivated by this observation, we propose a novel multi-

view clustering method by learning the Graph regularized

Low-rank Tensor representation and Affinity matrix (GLTA)

in a unified framework.

Contribution. The main contributions of this work can be

summarized as follows. The proposed GLTA not only learns

both the representation tensor and the affinity matrix, but also

considers the local view-specific geometrical structures and

the various contributions of different features. Specifically,

GLTA exploits the Tucker decomposition to encode the low-

rank property, adopts the manifold regularization to depict the

local view-specific geometrical structures, and assigns adap-

tively various weights for different features when constructing

the final affinity matrix. This way, the high order correlation

among different views as well as the local view-specific geo-

metrical structures can be explicitly captured. Extensive ex-

perimental evaluations on six real datasets demonstrate that

GLTA outperforms the state-of-the-art approaches.

2. GLTA

In this section, we propose a novel multi-view clustering

method, named GLTA, and then solve GLTA by the aug-

mented Lagrangian multiplier (ALM).

2.1. The proposed GLTA

Suppose that Xv ∈ R
dv×n (v = 1, 2, · · · , V ) denotes the

v-th feature matrix, Zv ∈ R
n×n is the corresponding repre-

sentation matrix, dv is the dimension of a sample vector in

the v-th feature matrix, n is the total number of data points,

and V is the number of views. Then, the proposed GLTA is

formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Z,E,S,ω

‖E‖2,1︸ ︷︷ ︸
noise

+
V∑

v=1

(
α ∗ tr(ZvLvZv′)︸ ︷︷ ︸

local manifold

+ βωv‖Zv−S‖2F︸ ︷︷ ︸
consensus representation

)

s.t. Xv=XvZv+Ev, v = 1, 2, · · · , V,
Z = C×1U1×2U2×3U3, U

′
i ∗Ui=I, (i = 1, 2, 3),︸ ︷︷ ︸

low-rank tensor representation

E = [E1;E2; · · · ;EV ], ω≥0, Σvωv=1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where ‖·‖2,1 is the l2,1-norm to remove the noise E. All rep-

resentation matrices {Zv} are merged to construct a 3-order

tensor Z . Then, the low-rank property of Z is described by

the Tucker decomposition, that is, Z = C×1U1×2U2×3U3.

C is the core tensor and Ui (i = 1, 2, 3) is the orthogonal fac-

tor matrix. Lv is the normalized graph Laplacian matrix. tr(·)
denotes the trace of a matrix. S is the final affinity matrix. α
and β are nonnegative parameters. ω = [ω1, ω2, · · · , ωV ] is

the weight vector, whose entry ωv is the relative weight of the

v-th view. In Eq. (1), we can learn both the representation

tensor Z encoded by the Tucker decomposition and the lo-

cal manifolds, and the affinity matrix S by assigning different

weights on different features.

2.2. Optimization of GLTA

This section aims to develop an efficient optimization algo-

rithm to solve Eq. (1). Due to the inseparable property of

variable Z , we adopt the variable-splitting technique and in-

troduce one auxiliary tensor variable Y . Then, Eq. (1) can be

reformulated as the following optimization problem:

min
Y,Z,E,S,ω

‖E‖2,1+
V∑

v=1

(
α ∗ tr(Y vLvY v′)

+βωv‖Y v−S‖2F
)

s.t. Xv=XvY v+Ev, v = 1, 2, · · · , V,
Z=C×1U1×2U2×3U3, U

′
i ∗ Ui = I, (i = 1, 2, 3),

E = [E1;E2; · · · ;EV ], ω≥0, Σvωv=1, Z = Y.
(2)

Using the ALM methodology, the corresponding augmented

Lagrangian function of Eq. (2) is obtained by

Lρ=‖E‖2,1+
V∑

v=1

(
α ∗ tr(Y vLvY v′)

+βωv‖Y v−S‖2F
)

+
ρ

2

( V∑
v=1

‖Xv−XvY v−Ev+
Θv

ρ
‖2F + ‖Z−Y+Π

ρ
‖2F

)
,

(3)

where Θ and Π of size Rn×n×V are Lagrange multipliers with

respect to two equal constraints, respectively. ρ > 0 is the

penalty parameter. Borrowing the idea of alternative update

strategy [2, 1, 3, 21, 10], Eq. (3) can be divided into the fol-

lowing five subproblems1.

Update Y: Given other variables in their previous itera-

tion, we can update Y by solving the following problem:

Y∗ = argmin
Y

V∑
v=1

(
α ∗ tr(Y vLvY v′)

+ βωv‖Y v − S‖2F
)

+
ρ

2

( V∑
v=1

‖Xv−XvY v−Ev+
Θv

ρ
‖2F +‖Z−Y+Π

ρ
‖2F

)
.

(4)

Actually, Eq. (4) can be separated into V independent mini-

mization problems and the v-th minimization problem is

Y v∗
= argmin

Y v

α ∗ tr(Y vLvY v′)
+ βωv‖Y v − S‖2F

+
ρ

2

(
‖XvY v −Av‖2F + ‖Y v −Bv‖2F

)
,

(5)

where Av = Xv − Ev + Θv

ρ and Bv = Zv + Πv

ρ . By

setting the derivative of Eq. (5) with respect to Y v to zero,

we can yield a Sylvester equation M ∗ Y v + Y v ∗ N = C,

where M = (2βωv+ρ)I+ρXv′
Xv , N = α(Lv+Lv′

), and

1For simplicity, the iteration number k is omitted in the updates of all

variables.
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C = 2βωvS + ρ
(
Xv′

Av +Bv
)

. Then, the optimal solution

of Y v can be obtained by

Y v∗
= lyap(M,N,−C), (6)

where “lyap(M,N,−C)” is the Matlab function to efficiently

solve the Sylvester equation.

Update Z: Fixing other variables in their previous itera-

tion, Z can be updated by

Z∗ = argmin
Z=C×1U1×2U2×3U3, U ′

i∗Ui=I

‖Z − (Y − Π

ρ
)‖2F , (7)

which can be equivalently transformed into the following op-

timization problem:

Z∗ = argmin
U ′

i∗Ui=I

‖C ×1 U1 ×2 U2 ×3 U3 − (Y − Π

ρ
)‖2F . (8)

The above problem can be easily solved by the HOOI al-

gorithm [22] to obtain the core tensor C and the orthogonal

factor matrices Ui. Then, the low-rank representation tensor

Z∗ is obtained by

Z∗ = C ×1 U1 ×2 U2 ×3 U3. (9)

Update E: Minimizing the augmented Lagrangian func-

tion Eq. (3) with respect to E, we have

E∗ = argmin
E

‖E‖2,1 + ρ

2

V∑
v=1

‖Ev − F v‖2F
= argmin

E

1

ρ
‖E‖2,1 + 1

2
‖E − F‖2F ,

(10)

where F v = Xv − XvY v + Θv

ρ and F is constructed by

vertically concatenating the matrices {F v} along the column.

The j-th column of optical solution E∗ can be obtained by

E∗(:, j) =

{‖F (:,j)‖2− 1
ρ

‖F (:,j)‖2 F (:, j), if 1
ρ < ‖F (:, j)‖2;

0, otherwise.
(11)

Update S: To obtain the optimal solution S∗, we can

minimize the augmented Lagrangian function Eq. (3) with

respect to S as

S∗ = argmin
S

V∑
v=1

ωv‖Y v − S‖2F . (12)

We also set the derivative of Eq. (12) with respect to S to

zero. The closed-form solution S∗ is

S∗ =
∑

v ωvY
v∑

v ωv
=

∑
v

ωvY
v, (13)

which is based on the constraint
∑

v ωv = 1.

Update ω: The optimization of ω is transformed into the

following problem

ω∗ = argmin
ω

V∑
v=1

ωva
v + γ‖ω‖22,

s.t. ω ≥ 0, Σvωv = 1,

(14)

where γ‖ω‖22 is used to avoid the futile solution [3] and av =

‖Y v−S‖2F . Then, Eq. (14) can be rewritten into the following

quadratic programming formulation

ω∗ = argmin
ω

‖ω +
a

2γ
‖22,

s.t. ω ≥ 0, Σvωv = 1.
(15)

Here, a Matlab function i.e., quadprog, is exploited to solve

the above problem.

Update Θ, Π, and ρ: The Lagrangian multipliers Θ, Π
and the penalty parameter ρ can be updated by

Θv∗
= Θv + ρ(Xv −XvY v − Ev);

Π∗ = Π+ ρ(Z − Y);
ρ∗ = min{λ ∗ ρ, ρmax}.

(16)

where λ > 1 is to facilitate the convergence speed [23, 24].

ρmax is the max value of the penalty parameter ρ. The whole

procedure of Eq. (1) is summarized in Algorithm 1.

Algorithm 1 GLTA for multi-view clustering

Input: multi-view features: {Xv}; parameters: α, β, γ =
10; nearest neighbors number 5; cluster number K;

Initialize: Y, Z, E, S, Θ, Π initialized to 0; weight ωv =
1
V ; ρ = 10−3, λ = 1.5, ε = 10−7;

1: while not converged do
2: for v = 1 to V do
3: Update Y v∗

by Eq. (6);

4: end for
5: Update Z∗, E∗, S∗, ω∗, Θv∗

, Π∗, and ρ∗ by Eqs. (9),

(11), (13), (15), and (16), respectively;

6: Check the convergence condition

7:
∑

v ‖Xv −XvY v∗ − Ev∗‖F /
∑

v ‖Xv‖F ≤ ε;
8: end while

Output: Affinity matrix S∗.

3. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed GLTA, in this sec-

tion, we first conduct experiments on six real datasets over six

state-of-the-art clustering methods. Then, to provide a com-

prehensive study of GLTA, we analyze the proposed model

with respect to two important parameters and report the em-

pirical convergence of GLTA.

3.1. Experimental settings

(1) Datasets: Following [3], we evaluate the performance

of GLTA on four news store datasets: BBC4view, BBCSport2,

20news3, 3Sources4; one article dataset: Wikipedia5, and one

2http://mlg.ucd.ie/datasets/segment.html
3http://lig-membres.imag.fr/grimal/data.html
4http://mlg.ucd.ie/datasets/3sources.html
5http://www.svcl.ucsd.edu/projects/crossmodal/
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Table 1. Details summary of the six real multi-view datasets.
Category Dataset Instance View cluster

BBC4view 685 4 5
News store BBCSport 544 2 5

20news 500 3 5
3Sources 169 3 6

Article Wikipedia 693 2 10

Generic Object COIL 20 1440 3 20

generic object dataset: COIL 206. The statistics of these

datasets are summarized in Table 1.

(2) Compared methods and evaluation measures: We

compared GLTA with six state-of-the-art methods, including

SSCbest [14]: the l1-norm regularized representation matrix

construction with the most informative view; LRRbest [13]:

the nuclear norm regularized representation matrix construc-

tion with the most informative view; DiMSC [1]: multi-view

subspace clustering with the Hilbert-Schmidt Independence

criterion; LT-MSC [2]: multi-view subspace clustering by

low-rank tensor constraint; MVCC [3]: multi-view clustering

via concept factorization with local manifold regularization;

t-SVD-MSC [4]: multi-view clustering via tensor multi-rank

minimization. The first two methods belong to single-view

clustering baselines, while, the others belong to multi-view

clustering ones.

For SSCbest and LRRbest, each single feature is inde-

pendently used and the best single view clustering result is

reported. For DiMSC, LT-MSC, and t-SVD-MSC, they all

need to firstly learn the representation matrix or tensor and

then construct the affinity matrix. For all methods, the spec-

tral clustering algorithm is performed to find the clustering

result.

Following [2, 3, 7], we exploit six popular clustering mea-

sures, i.e., accuracy (ACC), normalized mutual information

(NMI), adjusted rank index (AR), F-score (F-s), Precision

(Pre), and Recall (Re), to evaluate the clustering performance.

Generally, the higher values these six measures have, the bet-

ter the clustering quality is. Since the clustering step is based

on K-means for all methods and different initializations may

yield different results, we run 10 trials for each experiment

and report their average performance to avoid the randomness

perturbation.

3.2. Clustering performance comparison

All clustering results on six datasets are reported in Table 2.

The best results are highlighted in boldface with respect to

each dataset. We can observe that (1) multi-view clustering

approaches DiMSC, t-SVD-MSC, and our GLTA achieve bet-

ter performance than the single-view clustering approaches

SSCbest and LRRbest. This is mainly because the high-order

cross information among multiple views is well captured by

DiMSC, t-SVD-MSC, and our GLTA; (2) LT-MSC achieves

6http://www.cs.columbia.edu/CAVE/software/softlib/

Table 2. Mean clustering results on all real datasets.

Method
BBC4view

ACC NMI AR F-s Pre Re

SSCbest 0.660 0.494 0.470 0.599 0.578 0.622

LRRbest 0.802 0.560 0.621 0.712 0.697 0.727

DiMSC 0.892 0.728 0.752 0.810 0.811 0.810

LT-MSC 0.591 0.442 0.400 0.546 0.525 0.570

MVCC 0.745 0.587 0.550 0.656 0.654 0.658

t-SVD-MSC 0.858 0.685 0.725 0.789 0.800 0.778

GLTA 0.910 0.771 0.810 0.854 0.864 0.845

BBCSport

SSCbest 0.627 0.534 0.364 0.565 0.427 0.834

LRRbest 0.836 0.698 0.705 0.776 0.768 0.784

DiMSC 0.922 0.785 0.813 0.858 0.846 0.872

LT-MSC 0.460 0.222 0.167 0.428 0.328 0.629

MVCC 0.928 0.816 0.831 0.870 0.889 0.853

t-SVD-MSC 0.879 0.765 0.784 0.834 0.863 0.807

GLTA 0.939 0.825 0.849 0.885 0.890 0.880

20news

SSCbest 0.545 0.461 0.289 0.481 0.357 0.749

LRRbest 0.804 0.578 0.568 0.655 0.645 0.665

DiMSC 0.978 0.937 0.945 0.956 0.954 0.957

LT-MSC 0.990 0.965 0.975 0.979 0.979 0.980

MVCC 0.891 0.766 0.763 0.810 0.808 0.813

t-SVD-MSC 0.992 0.972 0.980 0.984 0.984 0.984

GLTA 0.996 0.983 0.990 0.993 0.996 0.990

3Sources

SSCbest 0.762 0.694 0.658 0.743 0.769 0.719

LRRbest 0.647 0.542 0.486 0.608 0.594 0.636

DiMSC 0.795 0.727 0.661 0.748 0.711 0.788

LT-MSC 0.781 0.698 0.651 0.734 0.716 0.754

MVCC 0.761 0.698 0.626 0.731 0.607 0.916
t-SVD-MSC 0.781 0.678 0.658 0.745 0.683 0.818

GLTA 0.846 0.728 0.665 0.736 0.805 0.678

Wikipedia

SSCbest 0.561 0.527 0.418 0.481 0.491 0.471

LRRbest 0.554 0.523 0.417 0.479 0.490 0.468

DiMSC 0.547 0.500 0.397 0.461 0.478 0.445

LT-MSC 0.532 0.496 0.407 0.471 0.480 0.461

MVCC 0.600 0.515 0.434 0.494 0.513 0.476

t-SVD-MSC 0.527 0.480 0.393 0.458 0.470 0.447

GLTA 0.595 0.549 0.455 0.514 0.522 0.506

COIL 20

SSCbest 0.803 0.935 0.798 0.809 0.734 0.804

LRRbest 0.761 0.829 0.720 0.734 0.717 0.751

DiMSC 0.778 0.846 0.732 0.745 0.739 0.751

LT-MSC 0.804 0.860 0.748 0.760 0.741 0.776

MVCC 0.732 0.845 0.675 0.692 0.647 0.744

t-SVD-MSC 0.830 0.884 0.786 0.800 0.785 0.808

GLTA 0.878 0.945 0.869 0.875 0.856 0.895
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Table 3. Comparison among different view feature by LRR.

Index
20news/3Sources

View 1 View 2 View 3

ACC 0.804/0.580 0.684/0.647 0.479/0.618

NMI 0.578/0.516 0.454/0.542 0.276/0.511

unsatisfactory results on the first two datasets which may

come from the fact that the unfolding-based tensor nuclear

norm is a loose surrogate of Tucker rank; (3) the performance

of GLTA is better than or comparable to that of all compet-

ing methods in most cases, especially on the 3Source and

COIL 20 datasets. The main reason is that [1, 2, 4] both

construct the low-rank representation matrix or tensor and the

affinity matrix in two separated steps without consideration

of the various contributions of different features. Besides,

the promising performance of GLTA also benefits from the

preservation of the local geometrical structures.

3.3. Model analysis

In this section, we aim to present a comprehensive study of

the proposed GLTA. We first explain the necessity of the last

term (the consensus representation) in Eq. (1) and then an-

alyze the parameters and empirical convergence of the pro-

posed GLTA.

(1) The necessity of the consensus representation term:
The clustering results by LRR [13] on each view feature are

reported in Table 3. From this table, we can see that the val-

ues of ACC and NMI on 20news vary from 47.9% to 80.4%
and 27.6% to 57.8%, respectively. For 3Sources, differences

among these three views with respect to ACC and NMI are

6.7% and 2.6%, respectively. Therefore, we can draw a con-

clusion that different features have various contributions for

clustering results, which is the fundamental motivation of this

paper. It is of vital importance to fully consider the various

contributions of different features in the multi-view cluster-

ing procedure.

(2) Parameter selection: We set the number of

nearest neighbors as 5 and γ = 10 for all experiments.

Two free parameters α and β should be tuned. Specif-

ically, they are empirically selected from the sets of

[0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.5, 1, 2, 5, 10, 50, 100, 500]

and [0.01, 0.1, 0.5, 1, 3, 5, 7, 10, 50, 100], respectively. Due

to page limitation, we only show the ACC and NMI results

of our GLTA with different combinations of α and β on

3Sources dataset in Fig. 1. From this figure, we can see that

with smaller α and β, GLTA is inadequate for clustering.

The main reason is that when α and β are too small, the

local manifolds and the consensus representation terms of

Eq. (1) have mere contribution to the construction of the

affinity matrix. When α and β are selected from the interval

[0.05, 0.4] and [1, 10] respectively, our GLTA can yield

promising results.

(3) The effect of Z, S: Recall that the proposed GLTA

0
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Fig. 1. ACC and NMI values of our GLTA with different

combinations of α and β on 3Sources.

can learn the representation tensorZ and the affinity matrix S
simultaneously. Following [1, 2, 4], once the representation

tensor Z is learned, the affinity matrix, i.e., Σv

(|Zv|+ |Zv′ |)
can be constructed as the input of spectral clustering algo-

rithm to segment all data points into K clusters. However,

the above scheme fails to consider the various contributions

of different features. To validate this, we also report the clus-

tering results using the representation tensor Z in Table 4.

Note that we can approximately regard Z obtained by set-

ting β = 0, which means that the representation tensor is en-

coded by the Tucker decomposition and local manifolds with-

out the consideration of various contributions of different fea-

tures. From Table 4, it can be seen that the clustering results

using the affinity matrix S are dramatically higher than those

using Z . This directly verifies the importance of the consen-

sus representation in Eq. (1).

Table 4. Comparison of the clustering performance of Z, S.
ACC / NMI

3Sources BBC4view BBCSport

Z 0.654/0.592 0.875/0.704 0.892/0.782

S 0.846/0.728 0.910/0.771 0.939/0.825

(4) Convergence analysis: It is intractable to derive the

theoretical convergence proof of the proposed GLTA. Instead,

we just provide the empirical convergence analysis in Fig.

2, in which the vertical axis denotes the error defined as∑
v ‖Xv − XvY v∗ − Ev∗‖F /

∑
v ‖Xv‖F . After 20 itera-

tions, the error yields a stable value, which means that GLTA

can converge within a few iterations.

4. CONCLUSIONS

In this paper, we developed a novel method, named graph

regularized low-rank tensor representation and affinity matrix

(GLTA) for multi-view clustering. GLTA can learn the low-

rank representation tensor, which is encoded by the Tucker

decomposition and the local manifolds, and the affinity ma-

trix, which is constructed by assigning different weights on

different features, simultaneously. Extensive experiments on
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Fig. 2. Convergence versus iteration.

six real datasets demonstrate that our method outperforms the

state-of-the-arts.
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